Harnessing the Deep Net Object Models for Enhancing Human Action Recognition

نویسندگان

  • O. V. Ramana Murthy
  • Roland Göcke
چکیده

In this study, the influence of objects is investigated in the scenario of human action recognition with large number of classes. We hypothesize that the objects the humans are interacting will have good say in determining the action being performed. Especially, if the objects are non-moving, such as objects appearing in the background, features such as spatiotemporal interest points, dense trajectories may fail to detect them. Hence we propose to detect objects using pre-trained object detectors in every frame statically. Trained Deep network models are used as object detectors. Information from different layers in conjunction with different encoding techniques is extensively studied to obtain the richest feature vectors. This technique is observed to yield state-of-the-art performance on HMDB51 and UCF101 datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnessing Deep Neural Networks with Logic Rules

Combining deep neural networks with structured logic rules is desirable to harness flexibility and reduce unpredictability of the neural models. We propose a general framework capable of enhancing various types of neural networks (e.g., CNNs and RNNs) with declarative first-order logic rules. Specifically, we develop an iterative distillation method that transfers the structured information of ...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Deep Neural Networks as a Computational Model for Human Shape Sensitivity

Theories of object recognition agree that shape is of primordial importance, but there is no consensus about how shape might be represented, and so far attempts to implement a model of shape perception that would work with realistic stimuli have largely failed. Recent studies suggest that state-of-the-art convolutional 'deep' neural networks (DNNs) capture important aspects of human object perc...

متن کامل

Parallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers

This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...

متن کامل

University of Amsterdam at THUMOS Challenge 2014

This notebook paper describes our approach for the action classification task of the THUMOS Challenge 2014. We investigate and exploit the action-object relationship by capturing both motion and related objects. As local descriptors we use HOG, HOF and MBH computed along the improved dense trajectories. For video encoding we rely on Fisher vector. In addition, we employ deep net features learne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1512.06498  شماره 

صفحات  -

تاریخ انتشار 2015